

Czech Technical University in Prague Faculty of Mechanical Engineering

COOLANT MIXING IN THE VVER-440 FUEL ASSEMBLY HEAD TOMÁŠ ROMSY, PAVEL ZÁCHA

Results

309 [°C]

Introduction

•

- Studying behavior of coolant flow in the fuel assembly head
- Possible occurrence of deviations between the signal from the thermocouple and the actual average temperature at the outlet of the assembly head (imperfect mixing of coolant)
- Creating computational grid of the fuel assembly outlet
- Thermohydraulic CFD calculation focused on field of coolant temperature
- Comparison of the calculated, measured values and values calculated from previously performed simulations

- 323_17 iteration 9500 , 323_34 iteration 10850
- Monitoring the average temperature of the thermocouple from 5 points

•210 thermocouples

C-control rods T-thermocouples S-self powered neutron detectors

Catcher

Simulation focused on mixing flow in the assembly head

Atomic Energy Research International Symposium in Bulgaria 2009
 -7 institutions (BME, ÚJV Řež, VUJE, FORTUM, AEKI, GIDROPRES, ŠKODA JS)
 -Comparison of the calculated data and prove imperfect mixing of coolant
 -Source geometry (step file) and input data for all participants were identical
 - Construction of computational models and calculation settings were different
 - Consideration of effects from the central flow tube

Creation of the model geometry and computational grid

- Source geometry: step file from AER symposium
- Used preprocessor code: GAMBIT 2.4.6
- Segmentation model to six parts: inlet, above inlet, mixing grid and the surrounding parts, the area around the lifting pins, catcher, outlet
- Segmentation parts to volumes (application of hexahedral cells and grid quality)
- 2178 volumes

Pic.: Distribution of temperature field, case 323_17

	Т _{оит} [°С]	Τ _{τc} [°C]	Т _{тс} -Т _{тс м} [°C]	T _{τc} -T _{ουτ} [°C]
Calculation	301,69	303,13	-0,17	1,44
Measuring	_	303,3	_	-

- T_{OUT} ... average temperature of the coolant at the outlet
- $T_{TC} \ldots$ calculated signal at the thermocouple
- $T_{TC\ M}$... measured signal at the thermocouple

Pic.: Step file

Pic.: Computational model

Modifications:

- Reducing lenght of the input section (neglecting the influence of spacer grids)
 Excession of cather solid geometry
- Mesh summary:
 - 13 214 013 hexahedral cells
 - controlled mesch quality using a set of boundary layers and setting on the edges of volumes
 - 520 cells Equi-size skew (0,75 0,819) = 0,004% of the total number

Thermohydraulical CFD calculation

- Used CFD code: ANSYS FLUENT 14.5
- Stationary calculation
- Solved two cases
 - 323 17 = internal assembly

Pic.: Distribution of temperature field, case 323_34

	Т _{оит} [°С]	Т _{тс} [°С]	Т _{тс} -Т _{тс м} [°С]	T _{τc} -T _{oυτ} [°C]
Calculation	295,88	296,66	-0,14	0,78
Measuring	-	296,8	-	-

Conclusion

• 323_34 = peripheral assembly

The initial conditions (temperature and speed) consistent with the AER symposium

Pic.: Inlet temperature field

- Consideration of flow from the the central tube
- Realizable k-ε turbulent model, standart wall function, set discretization schemes for secondorder accuracy
- Every case that had been solved had approximately 10 000 iterations and was solved by eight processors INTEL XEON SGI ALTIX 320, RAM 24 GB over 300 hours.

- Unsteady effects over mixing grid , but insignificant effect on the thermocouple measuring
- Coolant mixing in the fuel assembly head is imperfect, diverse temperature profile at outlet

Comparison table of results

323_17			323_34		
	Τ_{τC}[°C]	Т_{тс}-Т_{тс м}[°С]		T _{τc} [°C]	Т_{тс}-Т_{тс м}[°С]
Measuring	303,3	-	Measuring	296,8	-
BME	303,3	0	BME	296,9	0,1
Calculation	303,13	-0,17	Calculation	296,66	-0,14
VUJE	303,5	0,2	ÚJV Řež	297	0,2
ÚJV Řež	302,9	-0,4	FORTUM	296,6	-0,2
FORTUM	303,9	0,6	AEKI	296,5	-0,3
AEKI	302,4	-0,9	VUJE	297,5	0,7
GIDROPRES	301,9	-1,4	GIDROPRES	295,8	-1
ŠKODA JS	300,3	-3	ŠKODA JS	294,2	-2,6

Contact: tomas.romsy@fs.cvut.cz