Validation of CFD Model of Spent Fuel Pool at NPP Temelin

Autors: Ondřej Burian, Pavel Zácha, Václav Železný

Czech Technical University in Prague, Faculty of Mechanical Engineering, Dpt. of Energy Engineering

Introduction

- CFD computational model of spent fuel pool (SFP) of NPP Temelín ⇒ Created for analysis of temperature distribution in spent fuel pool in normal and abnormal operation conditions by company TES s.r.o in cooperation with FME CTU in Prague
- Summer 2011 measurement of vertical temperatures profiles during shutdown at 1. Unit NPP Temelín by TES s.r.o
- Spring 2012 validation of CFD model based on measured data by CTU in Prague

Spent fuel pool des	scription	Description of CFD model of spent fuel pool		
 Overall volume 1050 m³ (14,5 x 6 x 15,5 m) Storage spent fuel in compact storage grid Division to three sections – B01, B02, B03 	refueling level 15,5 m refueling channel refueling channel refueli	 Number of cells limited to 1 milion – computational time Large volumes of cells – average length of edges 100 mm Application mostly structured grid Heat transfer by walls not considered – adiabatic wall Heat transfer by water level – 0,9 kW.m⁻² In upper part set region with laminar flow 		

	precision"	based"	
50 000 – 100 000	"double precision"	"density based"	0,5
100 000 – 130 000	"double precision"	"density based"	2

Computation was provide on 8 quad-core processors AMD Opteron 8354 – 2,2 GHz. Time of computation 1040 hours machine time

Results of validation computation of CFD model

Conclusion to existing CFD model:

- In area of corner channel is model described insufficiently.
- In area of storage grid is assume good accordance model with reality.
- In area up the storage grid was confirm good accordance model wit reality

Conclusion to improve the CFD model:

 Better settings heat transfer between corner channel and storage grid

Temperature in the center of pool sections	Temperature in the corner channel – measuring point mMP5 ⁴ – measuring point with worst accordance model and measured data		 Refining the CFD grid in corner channel area Searching a use better model of turbulences which better describe flow conditions in spent fuel pool 	
Acknowledgment				Contact
This work was supported by the Grant Agency University in Prague, grant No. SGS13/133/C	of the Czech Technical 0HK2/2T/12	 Ing. Pavel Zácha, Ph.D. Ing. Martin Blaha (TES s.r.o) 	D)	ondrej.burian@fs.cvut.cz