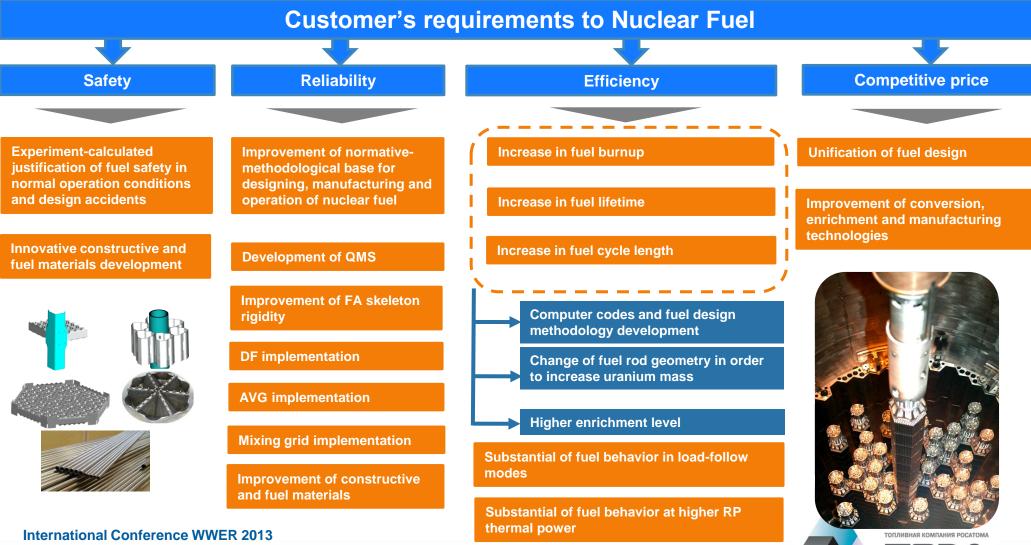


ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

NUCLEAR FUEL FOR NPP: CURRENT STATUS AND MAIN FIELDS OF THE DEVELOPMENT

A. Ugryumov JSC TVEL, Russia

Our Goal


To supply Customer with the fuel, that ensures:

Safe and reliable operation

Economic efficiency of utilization in flexible fuel cycles

International Conference WWER 2013 12.11.2013, Prague, Czech Republic TBBA

Nuclear fuel design and manufacturing technology development – the main course of Fuel company competitiveness

12.11.2013, Prague, Czech Republic

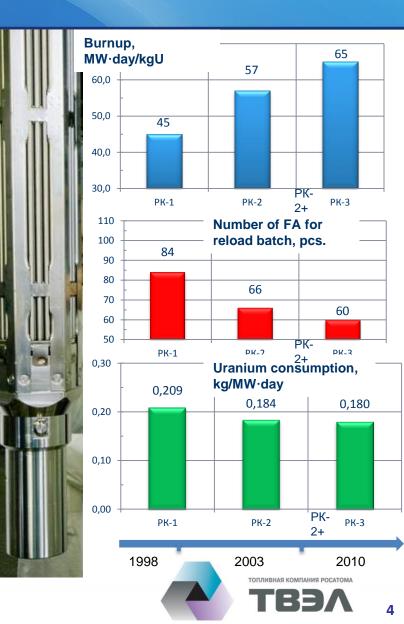
VVER-440 Nuclear Fuel

FA of the second generation Enrichment 4.87% Fuel pellet 7.6/1.2

- Kola NPP since 2010;
- Mohovce NPP since 2011;
- Bogunice NPP since 2012.

RK-3 of third generation Enrichment 4.87% Fuel pellet 7.8/0

• at Kola NPP since 2010.


FA of the second generation with intensification tabs on SG

• Loviisa NPPP since 2012.

Units thermal power uprate on the base FA of the 2nd generation

- 108%; - 109%.

- Kola NPP (Units 3,4) 107%;
- Mohovce NPP 107%;
- Bogunice NPP 107%;
- Dukovany NPP 105%;
- Paks NPP
- Loviisa NPP

VVER-440 Nuclear Fuel

Second generation fuel Enrichment 4.76% Pellet 7.8/0 мм

Fuel cycle - 6-year when operating at 1485 MWt (thermal). Type of fuel rod bundle – profiled, U-Gd. Number of fuelling cassettes – 60 Burnup- 65 MW day/kgU per fuel rod Operation in load-follow mode.

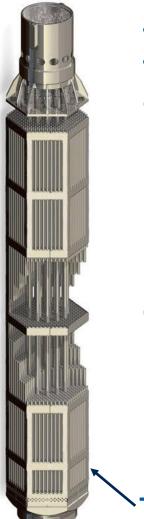
Technical documents set to substantiate the project of introduction at Dukovany NPP, Czechia, is developed.

Expected effect of introduction – lower number of cassettes for reloadingc ~7% compared with second generation fuel cassettes with fuel 4.87% and pellet 7.6/1.2 mm.

VVER-440 Nuclear Fuel

RK-3 design – without the shroud tube, skeleton formed by angels and tubes. Mass of UO2 - 132 kg (increased by 4.5%). Fuel rod pitch in the bundle increased from 12,3 to 12,6 mm. Fuel cycle – 6 x 1 year. The expected benefit of RK-3 implementation – increase in fuel consumption efficiency about 10% as compare to FA of the second generation.

Pilot batch operation (12 FAs) started at Kola NPP Unit 4 in 2010. Results are positive Extension of RK-3 usage at Kola NPP is expected in 2017 after transition to core control by local parameters in 2015.



VVER-440 Nuclear Fuel Stages of development

years	before 1998	after 1998	after 2003	after 2010
FA type	Regular RK, with shroud	Regular RK, with shroud	2-nd generation RK, with shroud	2-nd / 3-d generation RK
Fuel rod bundle type	Nonprofiled	Profiled	Profiled, UGd	Profiled, UGd
Fuelling enrichment, % U ²³⁵	3.60	3.82	4.25 / 4.38	до 4.87
Fuelling FA, pcs.	105	84	66	60
Burnup, MW∙day / kgU	36	45	57	65
Fuel cycle	3-year	4-year	5-year	6-year
Natural U consumption, kg /MW ·day	0.256	0.209	0.184	0.180

Nuclear Fuel for VVER-1000

TVSA-PLUS (TBCA-12PLUS in 2014) and TVS-2M have identical techno-economic characteristics which provide:

 ✓ capability to increase reactor thermal power up to 104 % of nominal

✓ 18 months fuel cycle (reload batch of 66 pcs.)

TVS-2

- ✓ fuel rod burnup 72 MW·day/kgU
- ✓ capability to operate in load-follow modes (100-75-100% Ne)
- ✓ protection from foreign materials
- \checkmark capability for repair at NPP site

VSA-PLUS

VVER-1000 nuclear fuel TVSA-T for Unit 1 and 2 Temelin NPP

Main solutions

- ✓ compatibility with VV6 fuel
- ✓ 8 combined grids (SG+MG)
- ✓ fuel column 3680 мм high (blankets 2×150 мм)
- ✓ fuel pellet 7.6/1.2 мм
- \checkmark mass of UO₂ in cassette 524.1 kgU
- ✓ burnup per fuel rod 72 MW day/kgU

Nuclear Fuel for VVER-1000 TVSA-12

- TVSA-12 design
 - 12 SG 35 mm height
 - fuel column length 3530 mm
 - fuel pellet Ø7,8/0 mm
- Geometrical, thermal-hydraulic, neutron-physics and thermal-mechanical compatibility with TVSA is provided
- 12 pilot TVSA-12 were loaded at Kalinin-1 in 2011. Results of operation is positive
- > 2013 justification and licensing in Ukraine.
- > 2013-2014 justification and licensing in Bulgaria.
- Delivery of the first batch of TVSA-12 at Rovno-4 planned in 2014

FA type	TVSA	TVSA-12
Hydraulic loss coefficient for FA with DF	12,1	12,5
Number of SG / height of SG (mm)	15 / 20	12 / 35
Skeleton bowing rigidity, N/mm	55	61,5

VVER-1000 Nuclear Fuel Stages of development

years	before 1997	1998– 2010	after 1998	after 2003	after2006	after 2006/ after 2010	after 2011
FA type	TVS, TVS-M	AFA	TVSA	TVS-2	TVSA- Alpha	TVS-2M/ TVSA-PLUS	TVSA-12
Absorber type	-	U-Gd	U-Gd	U-Gd	U-Gd	U-Gd	U-Gd
Fuelling enrichment, % U ²³⁵	4.31	3.77	до 4.4	4.26	4.83	4.88	4.83
Number of fuelling FA	54	48	42	54	36	60 - 66	36
External diameter, мм	7.57 / 2.3	7.57 / 1.5	7.57 / 1.4	7.57 / 1.4	7.8 / 0.0	7.6 / 1.2	7.8 / 0
Fuel burnup, MW×day/kgU	49	49	55	55	65	65	65
Fuel cycle	3×1	3×1	4×(310– 320)	3 ×(350– 370)	5 ×(310– 320)	3 ×(480–510)	5 ×(310– 320)
U consumption, kg/MW×day.	0.240	0.205	0.199	0.210	0.187	0.230	0.187

FA of 4th generation for VVER-1000

TVS-2M 12 SG, MG, DF,

Fuel column – 3680 mm, Unified top nozzle

TVSA-PLUS

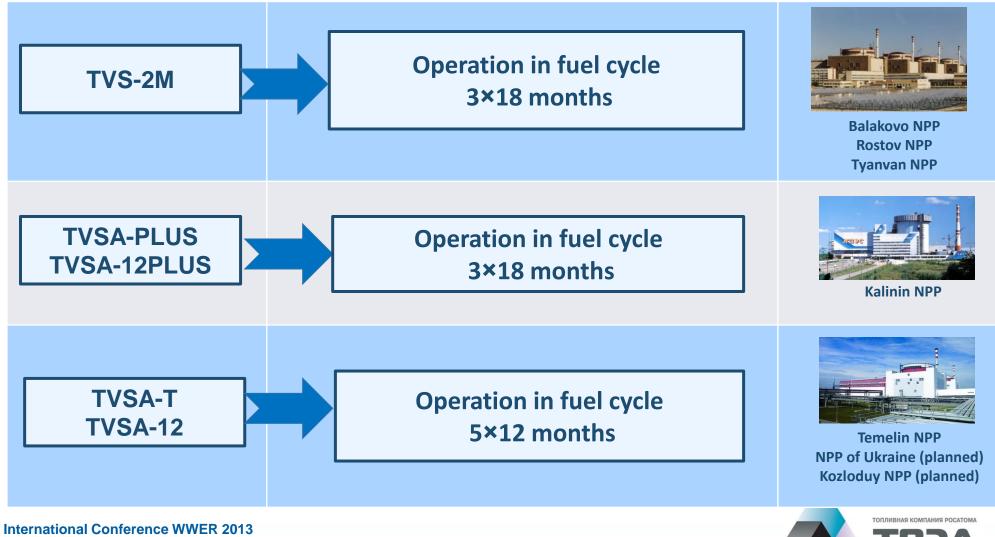
DF, Fuel column – 3680 mm

TVSA-ALFA

SG, DF, fuel pellet Ø7,8/0 mm

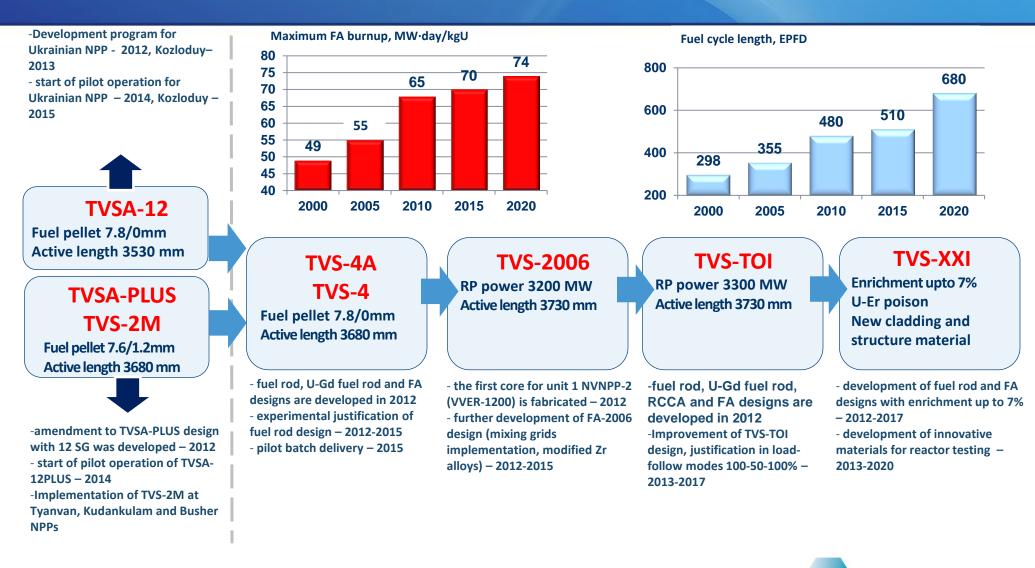
Stages of development

Design documentation	2012
Rosatom scientific meeting #2	2013
Pilot operation	2015


FA of 4th generation Unified top nozzle

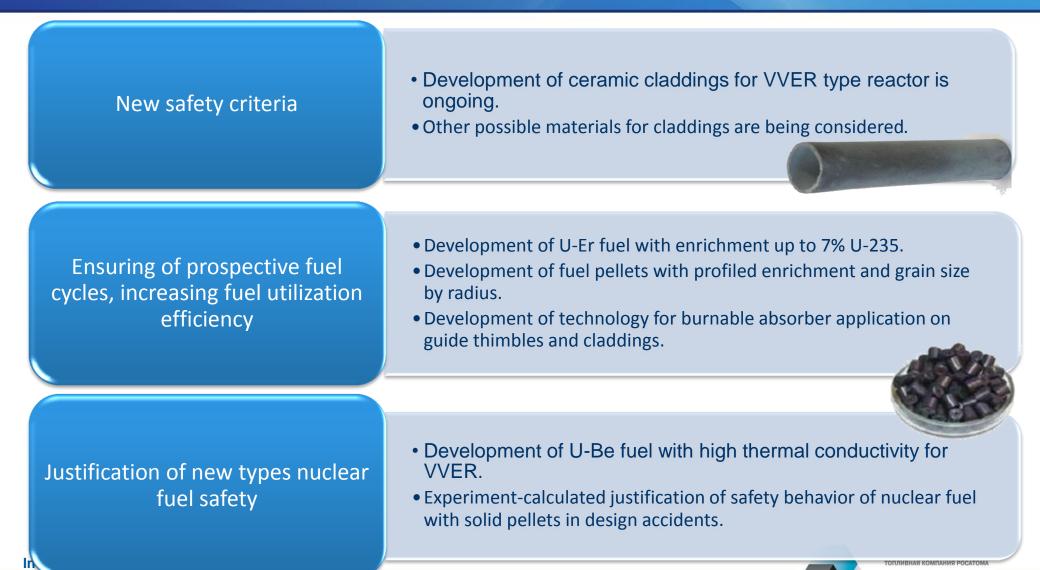
12 SG, MG, DF Fuel column– 3680 mm Fuel pellet Ø7,8/0 mm UO_{2 mass}- 568,4 kg Fuel cycle 3x510 or 5x333 increase in fuel cycle length at 8 % of reduction in number of FA at 10%

or decrease in reload batch enrichment at 7%


International Conference WWER 2013 12.11.2013, Prague, Czech Republic топливная комп.

VVER-1000 fuel cycles, thermal power 104 % N_{nom}

12.11.2013, Prague, Czech Republic


Development of Nuclear Fuel for VVER-1000/1200/1300

International Conference WWER 2013 12.11.2013, Prague, Czech Republic

ГОПЛИВНАЯ КОМПАНИЯ РОСАТОМ

TVS-XXI

12.11.2013, Prague, Czech Republic

Development of Nuclear Fuel fabrication technology

technical re-equipment of rolling production

Blank: Ø109 mm Mills HTP, HPTR Etching in bath.

Enlarged blank Ø199 mm, new technological processes with usage of:

- press of 35 MH;
- radial forging machines SKK14,10;
 rolling mill KPW 75,50,25,18 with ring calibers;
 polishing (LOESER), jet-etching;
- cladding cutting in size, laser marking.

 Claddings production with up the art level characteristics

 Zirconium rolling production for TVS-K abd foreign customers (AECL, GNF/GE, KEPCO)

 Cost decrease because of product's higher quality, less power consumption and labor.

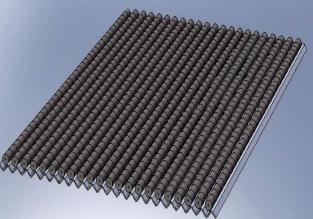
Claddings characteristics

	<u>Before After</u>		
 wall thickness, mm 	0,63	0,54	
• diameter tolerance, mm	±0,05 ±0,0		
 polythickness, mm 	no	<i>≤0,05</i>	
•roughness, Ra, мкм	1,0	0,6	
 hafnium content, ppm 	<i>≤</i> 500	<i>≤</i> 50	

Development of Nuclear Fuel fabrication technology

Section for producing uranium dioxide powder by "dry" conversion technology

Line for producing pellets



Stacker of pressed pellets in trough for sintering

Equipment for optical inspection of pellets appearance

Fuel pellets on pallets

Development of Nuclear Fuel fabrication technology

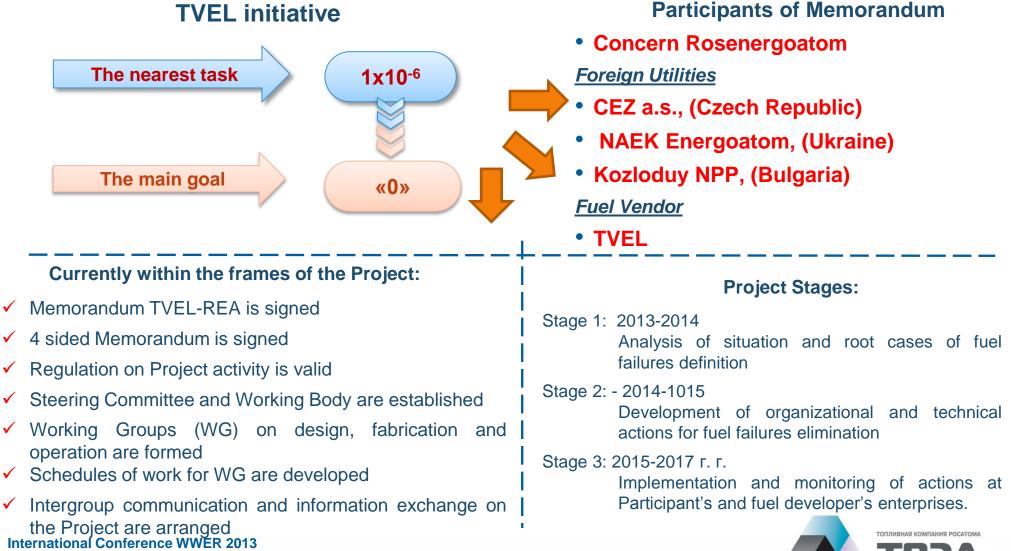
Line for fuel rod fabrication

Robotized complex for assembly and welding of FA skeletons

Automated bench for fuel bundle assembly

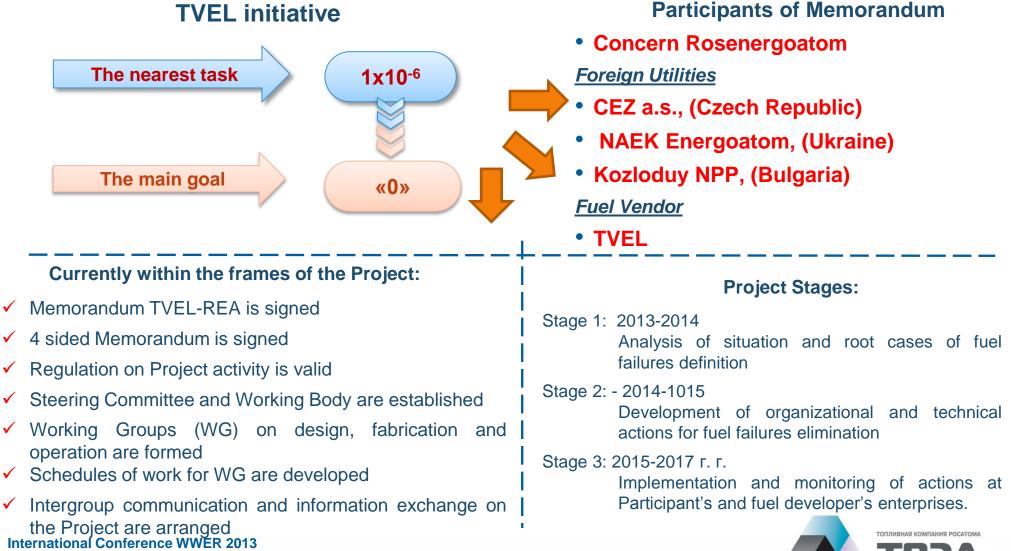
International Conference WWER 2013 12.11.2013, Prague, Czech Republic

Robotized complex for spot welding of spacer grids



Optical bench for FA geometry inspection

ИВНАЯ КОМПАНИЯ РОСАТОМ


Driving to zero failure

12.11.2013, Prague, Czech Republic

19

Driving to zero failure

12.11.2013, Prague, Czech Republic

20

Conclusion

- New FA designs
- Modern designing methods
- New automated technologies of nuclear fuel fabrication
- Driving to Zero Failure

ILLLLLLLLL

- Increase in economical efficiency of fuel utilization
- Decrease in amount of spent fuel

Rise of competitiveness and social acceptability of nuclear power generation

International Conference WWER 2013 12.11.2013, Prague, Czech Republic

MITAHUR POCATOMA

21

Thank you for your attention!

