

TEMELÍN POWER UPRATE

VVER 2013 Prague, Nov. 2013

martin.bica@cez.cz

TEMELÍN POWER UPRATE

TEMELÍN ... more efficient and powerful


```
Uprate of nom. reactor thermal power:
```

3000 => 3120 MWt (+ 4%)

Electric Power:

1016 => 1056 MWe (*)

+ 40 MWe / unit =

+ 80 MWe total

=> +0,6 TWh/year

* exact values are dependent on external conditions

Cheapest and cleanest new power source ...

PROJECT MILESTONES

- > 20.5.2010 approved Project Intent
- > 09,10/2010 contracts (NRI, TVEL)
- > 2010÷12 analytical part of the uprate project
- Refueling outages 2011/12/13 implementation of related equipment modifications
- 2012÷13 personnel training
- 22.4.2013 nuclear safety regulatory body (SÚJB) permission
- > 18.8.2013 3120 MWt on unit 2
- 22.9.2013 3120 MWt on unit 1

MAIN FEATURES ...

The Temelin Power Uprate project key features:

- No change in:
 - fuel design
 - technological safety system's design (flow rates, volumes, ...)
 - safety analysis acceptance criteria
 - SG secondary pressure
- based on utilization of reserves existing in the current design => NO extensive modifications of plant equipment => unique economical parameters
- repeated project (... already implemented on several russian VVER-1000 units prior to Temelín)

PROJECT SCOPE (2)

FUEL & LICENSING

- Safety Analysis, SAR revision
- Update of methodologies for reload design and reload safety evaluation
- 1st 104% reload design

NORMAL / ABNORMAL OPERATION

- Analysis of operational modes (normal, abnormal, accidents), update of operational procedures
- Chemistry, radiation monitoring, ...

SYSTEMS & EQUIPMENT

- Strenght, lifetime, EQ evaluations
- Related equipment modifications (incl. new I&C settings)

PROJECT SCOPE

ENVIRONMENTAL IMPACT

- Proof of no significant environmental impact (all limits remain valid)

PERSONNEL TRAINING

STARTUP TESTS

EQUIPMENT MODIFICATIONS

Areas of main equipment modifications

I&C

- RPS and LS settings
- Few PCS settings
- Field instrumentation: expansion of span of several sensors
- NAPs / Beacon settings

Technology

- Increase of hydraulic head of condensate pumps

Electric equipment

- Uprate of generator Sn (1111 MVA => 1250 MVA) supported by several adjustments to provide better cooling, new PQ diagram settings (see picture)
- Modification of generator breaker cooling system
- Several protection settings

EQUIPMENT MODIFICATIONS (2)

Generator ...

STARTUP TESTS

3 startup stages: $0 \Rightarrow 96\% \Rightarrow 98\% \Rightarrow 100\%$

- Standard reactor physics tests, protection system calibrations
- > Evaluation of main parameters incl. predictions ...
- > Tests of electric equipment paremeters, heatup (generator, outputs conduits, unit transformer) ...
- Vibrations of main components, other diagnostics tests
- Abnormal process (dynamic) test (cond. pump trip)

STARTUP TESTS (2)

RESULTS ... =>>> O.K.

SAFE OPERATION ON UPRATED POWER CONFIRMED

- > All safety criteria met
- Small deviations not directly related to uprated power
 - High temperature of encapsulated conduits below generator inoptimal constructional configuration
 - Elevated temperature of generator retractive plate in operational states with very negative reactive power (underexcited)
 - Inability of completion of valid steam humidity measurement using chemical method (Na concentration) alternate method employed

Project continues till 2014

=> Evaluation of complete fuel cycle operation on uprated power, evaluation of equipment inspections performed in 2014 refueling outages

QUESTIONS, REMARKS ...

